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Abstract. Spectral characteristics of the oceanic boundary-layer model response to

wind stress forcing are assessed by comparing surface drifter observations from the Southern

Ocean to a suite of nine idealized models. The models parameterize the vertical flux of

horizontal momentum using a first-order turbulence closure scheme. They each use one

of three vertical profiles for the vertical viscosity (constant, linearly increasing from zero

at the surface, or linearly increasing from a finite value at the surface) and one of three

conditions defining the bounday layer (infinite layer, one layer, or one-and-a-half layer).

Transfer functions describe the spectral linear response of the ocean to wind stress. A common

characteristic of the models is that at sub-inertial frequencies, the instantaneous velocity at

the surface is to the right of the wind stress vector in the Northern Hemisphere, while the

supra-inertial response is to the left. The biggest differences between the models emerge

at the local inertial frequency: while some models show a limited response, others have an

unbounded resonant response.

The ageostrophic component of near-surface velocity is computed by subtracting

altimeter-derived geostrophic velocities from observed drifter velocities (nominally drogued

to represent motions at 15-m depth.) Then the transfer function is computed to link these

ageostrophic velocities to observed wind stresses. The model that most successfully describes

the variability in the drifter data has a shallow layer of depth O(30-50 m), in which the

viscosity is constant and O(100-1000 m2 s−1), with a no-slip bottom boundary condition.

For this model’s parameters, little latitudinal or seasonal variability is seen, and there is no

obvious link to wind stress or climatological mixed-layer depth. The second best model

has a vertical viscosity with a surface value O(200 m2 s−1), which increases linearly with

depth at a rate O(0.1-1 cm s−1) and a no-slip boundary condition at the base of the boundary

layer of depth O(103 m). The depth of the boundary layer for this model is found to be

dubiously large and unphysical at some latitudes and seasons. It is suggested that this is a

consequence of the inability of Ekman models to remove energy from the system by other

means than shear-induced dissipation. For this model, while the surface viscosity shows little
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variability, its linear coefficient and the boundary layer depth seem to covary with latitudes

and seasons like the wind stress. The Ekman depth scale for this model appears to scale like

the climatological mixed-layer depth.
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1. Introduction

The focus of this paper is the response to wind forcing of the oceanic boundary layer

(OBL) in the Southern Ocean. This is motivated by the fact that the Southern Ocean is

believed to be a primary location of surface ocean mixing as a result of wind energy input,

and this is of relevance for the global oceanic circulation (Wunsch and Ferrari, 2004). While

Large et al. (1997) stressed that observations of mixing processes from this region are needed

to constrain general circulation models, we still lack observations of near-surface mixing on

large scales.

A number of recent studies have evaluated mixing processes in the Southern Ocean,

both in the deep ocean (e.g. Naveira Garabato et al., 2004; Sloyan, 2005) and in the upper

ocean (e.g. Cisewski et al., 2005; Thompson et al., 2007). This study contributes to these

investigations by focusing on near-surface mixing processes that are linked to wind forcing

and that input momentum to the large-scale circulation.

Most of our understanding of the ocean’s response to wind forcing at the local scale

has been framed in terms of Ekman (1905) theory. Ekman’s theory is usually utilized in the

context of constant forcing to estimate the ocean’s response. However, as we know, winds are

not constant and moreover, this theory makes specific assumptions about the vertical viscosity

and the structure of the upper ocean boundary layer that may not be realistic.

Steady conditions are rarely achieved in the real ocean, and, as a consequence, the steady

Ekman spiral has proved difficult to observe. Only through extensive spatial and temporal

averaging was it demonstrated to exist to some degree (e.g. Price et al., 1987; Wijffels et al.,

1994; Chereskin, 1995). While predicted Ekman transports agree well with observations (e.g.

Price et al., 1987; Chereskin and Roemmich, 1991; Chereskin, 1995; Wijffels et al., 1994;

Schudlich and Price, 1998), predictions for the detailed vertical structure of the wind-driven

velocities have been less satisfactory. Generally, an Ekman-type spiral appears more “flat”

than the theoretical one derived from the “classic” steady model with a constant vertical

viscosity K and an infinite ocean. This mismatch is an indication either that the velocity



4

magnitude decays with depth more rapidly than the velocity vector rotates away from the wind

stress direction or that the shear is predominantly downwind (Chereskin, 1995; Schudlich

and Price, 1998; Price and Sundermeyer, 1999). K, which represents the “mixing”, can be

estimated either by fitting observations to the speed decay or to the velocity rotation at depth.

Estimates obtained in these two ways can differ by an order of magnitude (Weller, 1981; Price

et al., 1987; Chereskin, 1995; Lenn, 2006). Thus most studies have concluded that “Ekman

theory” is unable to reproduce the observed detailed vertical structure of wind-driven currents.

Analytic solutions for the transients of several Ekman models have been derived (e.g. Lewis

and Belcher, 2004) but ultimately the noisy nature of ocean velocity observations makes

comparing time-series observations with theoretical models difficult.

In fact, what is actually observed depends on the time scales considered. While

oceanic observations indicate that turbulence closure models can lead to better predictions

of wind-driven velocities at sub-inertial frequencies, slab-like models are more successful

at the inertial frequency (Weller and Plueddemann, 1996; Plueddemann and Farrar, 2006).

In slab or “mixed-layer” models, it is assumed that the momentum injected by the wind is

instantaneously (or within one model time step) and uniformly distributed over the depth of

the OBL, which implies that the viscosity is infinite. This is at odds with the parametrization

of the viscosity in turbulence closure boundary layer models such as KPP (Large et al., 1994)

which are implemented in Ocean General Circulation Models (OGCM). In this study we

examine the ocean’s response to wind forcing using a suite of different Ekman-type models

to identify the boundary conditions and vertical viscosity formulations that best represent

observations of wind-driven motions simultaneously at a wide range of time scales or that

is, frequencies. We consider here three types of vertical profiles for K and three types of

boundary conditions at the bottom of the OBL, implying nine Ekman layer models. Some of

these have been investigated (e.g. Ekman, 1905; Gonella, 1972; Thomas, 1975; Madsen, 1977;

Jordan and Baker, 1980; Lewis and Belcher, 2004), but we found no previous comprehensive

study of the frequency characteristics of these nine models. The vertical viscosity and
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boundary layer depth (BLD) parameters for these models are considered with respect to

environmental parameters, in order to study near-surface mixing processes in the Southern

Ocean. In the OBL models considered here, no buoyancy fluxes are modeled so that the only

forcing flux is the local momentum input at the surface by the wind stress. These models

may appear to be of limited utility in modeling the oceanic boundary layer under strong

buoyancy forcing. As an example, Price and Sundermeyer (1999) shown that the deepening

and shoaling of the surface mixed layer by diurnal solar forcing could result in the time-mean

spiral structure of wind-driven currents. Also, it has been shown that it is needed to take into

account the local stratification that interacts with the penetration of wind induced momentum

(e.g. Plueddemann and Farrar, 2006) to model properly wind-driven near-surface currents. In

this paper we suggest that Ekman-type models are still useful to explain the observations in the

Southern Ocean, because the roles of buoyancy fluxes and the associated stratification seem

to be captured by the BLD or the Ekman scales that appear in the models. Ekman models

have such a clear legacy (and they remain a cornerstone of textbooks), that it would be hard to

dismiss them without exploring their strengths and limitations in full detail.

Looking at the characteristics of OBL models at different time scales comes down to

considering their spectral characteristics. This is studied using the transfer function, the input

of which is the wind stress and the output the oceanic velocity. This paper extends earlier

theoretical consideration of the transfer function for the OBL (Gonella, 1972; Weller, 1981;

Rudnick and Weller, 1993). Here, the nine theoretical transfer functions, corresponding to the

nine models, are compared to the transfer functions estimated from surface drifter data from

the Southern Ocean. The observed transfer functions are derived by carrying out cross-spectral

analysis for surface drifter trajectories and wind stress interpolated onto drifter positions.

This paper is organized as follows: in section 2, the concept of transfer function for

vector input and output variables are interpreted in the context of OBL dynamics. In section

3, the mathematical steps leading to the transfer function expressions from the horizontal

momentum balance equation are given. (The general characteristics of these transfer functions
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and their limiting behavior are discussed in appendix A. These functions can be graphically

represented as a function of frequency and depth.) The oceanic and atmospheric datasets used

in this study are described in section 4, and the methodology used to estimate the observed

transfer functions in the Southern Ocean is given in section 5. The results of fitting the

modeled transfer functions to the observed ones are given in section 6 and a discussion of

models’ performance is found in section 7. Finally section 8 provides a summary.

2. The transfer function

a. Fourier series decomposition for a vector time series

A vector time series (here of the wind stress, drifter velocity or ageostrophic velocity) can

be represented as a single complex Fourier series (if it is assumed to be periodic, with period

T ):

u(t) = u(t) + iv(t) =
k=+∞∑

k=−∞

uk(t), (1)

where u and v are the zonal and meridional components, respectively; t is the time, and

i =
√
−1. At each discrete frequency νk = k/T , the rotary component is

uk(t) = Ck exp(i2πνkt), (2)

with the complex Fourier coefficient Ck:

Ck(νk) =
1

T

∫ T

0

u(t) exp(−i2πνkt)dt. (3)

Each component is a vector rotating with time. The hodographs for these vectors are

counterclockwise-rotating circles for positive frequencies and clockwise-rotating circles for

negative frequencies. For each rotary component, the absolute value of Ck indicates its

magnitude.
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b. Theory of the transfer function for vectors

For our analysis, the local wind stress vector at the air-sea interface, τ (t), is interpreted

as the input of a causal linear system. The output of this system is the ocean velocity vector

u(t, z) at depth z. The velocity u(t, z) at time t can therefore be thought of as a convolution of

the wind stress with the impulse response function h(t′, z), where t′ is time lag, and z is depth

(e.g. Bendat and Piersol, 1986, p. 189):

u(t, z) =

∫ ∞

0

h(t′, z)τ (t − t′)dt′. (4)

Taking the Fourier transform
∫ +∞
−∞ (·) exp(−i2πνt)dt of Eq. (4), the convolution theorem

linearizes the relationship:

U(ν, z) = H(ν, z)T(ν), (5)

where U, H, and T are the Fourier transforms of u, h, and τ , respectively. At any given

frequency ν, the transfer functionH is complex valued.

What is the interpretation of H? Assume the wind stress forcing is monochromatic (i.e.

its Fourier series has only one non-zero component) with frequncy ν0 > 0 and a magnitude of

1 N m−2. Thus:

τ (t) = 1 × exp(+i2πν0t). (6)

The hodograph of such a wind stress is a counterclockwise-rotating circle. Its Fourier

transform can be defined with the help of the delta function, i.e. T(ν) = 1 × δ(ν − ν0) (in

units of N m−2 s). The resulting ocean velocity u(t, z) is the inverse Fourier transform of

U(ν, z):

u(t, z) =

∫ +∞

−∞
U(ν, z) exp(+i2πνt)dν

=

∫ +∞

−∞
H(ν, z)T(ν) exp(+i2πνt)dν

=

∫ +∞

−∞
H(ν, z)δ(ν − ν0) exp(+i2πνt)dν

= H(ν0, z) exp(+i2πν0t).

(7)
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Thus, in this example, u(t, z) is a vector rotating with the wind stress at frequency ν0, and its

Fourier series has only one non-zero component. The velocity vector has a constant deflection

angle with respect to the stress vector, which is given by the phase of the complex number

H(ν0, z) (in units of kg−1 m2 s). If the rotating wind stress has a magnitude of 1 N m−2

[roughly equivalent to a 10-m wind speed of 20 m s−1 (e.g. Large and Pond, 1981)], then the

absolute value ofH(ν0, z) indicates the speed of the upper ocean currents.

In Appendix A, the theoretical and observed transfer functions are plotted in the complex

plane. The axes can be thought as being fixed in a reference frame rotating with the wind stress

vector, with the x-axis aligned with the wind stress vector. This representation is independent

of the coordinate system, and it is particularly appropriate for studying the angular relationship

between the wind-driven ocean velocity and the wind stress on global scales. This type of

analysis is reminiscent of the averaging method developed by Price et al. (1987), where

the signal-to-noise ratio of the wind-driven velocities is improved by projecting them into

time-averaged along- and cross-wind directions.

3. Transfer functions for Ekman layer models

a. Equation of motions

For consistency, the vertical coordinate z is taken positive downwards, and z = 0 is the

mean ocean-atmosphere interface. In this discussion we will drop angular brackets. For a

horizontally homogenous OBL, in the absence of pressure gradients the linearized horizontal

momentum balance is:
∂u(t, z)

∂t
+ ifu(t, z) = −1

ρ

∂τ (t, z)

∂z
, (8)

where u(t, z) is the horizontal velocity forced solely by the wind stress τ (t, 0), f the Coriolis

parameter, and ρ the density of seawater. The “mixing” is written as a vertical flux of

momentum per unit mass 〈u′w′〉, where w is the vertical component of the velocity (positive

downward). Angular brackets (〈·〉) represent the “fast” time average and primes the turbulent
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fluctuations that are typically not resolved by large-scale oceanic observations. This flux

defines a turbulent or Reynolds stress (per unit mass) acting on the large-scale circulation (e.g.

Pedlosky, 1979):

〈u′w′〉 ≡ τ

ρ
. (9)

Following the concept that turbulent momentum fluxes are down-gradient and that they follow

a Fickian law akin to what occurs at the molecular level, this turbulent stress is written as a

turbulent coefficient K, the vertical viscosity, multiplied by the vertical shear of horizontal

velocity:
τ (z)

ρ
= −K(z)

∂u(z)

∂z
. (10)

This parameterization provides a first order turbulence closure scheme of the Reynolds

equations for the velocity in the OBL. It yields a linearized equation of motion conveniently

written in terms of u only.

Using Eq. (10), the momentum equation becomes:

∂u(t, z)

∂t
+ ifu(t, z) − ∂

∂z

(
K(z)

∂u(t, z)

∂z

)
= 0, (11)

where K depends on depth only. The Ekman layer physics is governed by the choice of the

vertical form of K and by the depth of the OBL. To obtainH for each OBL model Eq. (11) is

Fourier transformed to obtain an ordinary differential equation in z forU(ν, z):

i(2πν + f)U(ν, z) − d

dz

[
K(z)

dU(ν, z)

dz

]
= 0. (12)

Then, using the Fourier transformed boundary conditions, a solution for U(ν, z) is found in

the form given by Eq. (5).

A number of studies have solved Eq. (11) explicitly for u(t, z) using a variety of vertical

profiles for K(z) and applying several types of boundary conditions. For example, Lewis

and Belcher’s (2004) derivations of the time-dependent solutions showed that if a constant

wind-stress boundary condition is employed, then the lower boundary condition controls the

damping scale, viscous or inertial, of the transient terms (in the form of inertial oscillations).
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Here, Eq. (11) is solved in the spectral domain. In many of the cases, our spectral solutions

are modified versions of the time-mean terms of the solutions presented by earlier authors

(Ekman, 1905; Thomas, 1975; Madsen, 1977; Jordan and Baker, 1980; Lewis and Belcher,

2004).

b. Parameterization of the vertical viscosity

We consider nine models arising from three different vertical profiles

for K(z), and three different bottom boundary conditions. These models are sketched

in Fig. 1. The model number (1, 2 or 3) designates the vertical profile of K and the letters (a,

b or c) indicate the bottom boundary condition. Figure 1.

Models 1a, 1b, and 1c have a constant viscosityK = K0 (first row of Fig. 1), as proposed

by Ekman (1905).

Models 2a, 2b, and 2c have a viscosity that increases linearly with depth and that vanishes

at the surface, as K(z) = K1z (second row of Fig. 1). This linear increase in K with depth

is physically justified, because it assumes that wind-driven turbulent eddies are larger further

from the surface, and therefore that the turbulent viscosity is larger at depth (e.g. Prandtl,

1952). For small z, a linear profile implies that the velocity should approximate a logarithmic

profile as for a wall-bounded shear flow (e.g. Kundu and Cohen, 2002, p. 528), analogous to a

linear K profile used for the atmospheric boundary layer (Tennekes, 1973). A similar profile

has been predicted for the oceanic boundary layer (e.g. Madsen, 1977; Jordan and Baker,

1980; Thomas, 1975; Craig et al., 1993).

Models 3a, 3b, and 3c have a viscosity that is finite at the surface and that increases with

depth: K(z) = K0 + K1z (third row of Fig. 1). The linear part of the viscosity profile is again

justified by the mixing length argument. These models and their associated transfer functions

resemble the transfer functions for models 2a, 2b, and 2c. The constant part K0 allows the

top boundary condition to be satisfied exactly without requiring approximations of the general

solutions close to the surface.
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c. Boundary conditions

For all models, the surface boundary condition matches surface wind stress to turbulent

stress in the upper ocean. The boundary condition in the time domain and its corresponding

Fourier transform are:

−K(0)
∂u(t, 0)

∂z
=

τ (t, 0)

ρ
↔ −K(0)

dU(ν, 0)

dz
=

T(ν)

ρ
. (13)

This condition cannot be satisfied exactly when K vanishes at z = 0 in models 2a, 2b, and 2c.

Instead it is taken as a limit.

For the bottom boundary condition, three cases are considered:

i. Models 1a, 2a, and 3a are for a homogeneous ocean of infinite depth, and the

corresponding bottom boundary condition specifies that the wind-driven velocity tends

to zero as z → +∞:

u(t, z) −−−−−→
z−→+∞

0 ↔ U(ν, z) −−−−−→
z−→+∞

0. (14)

ii. Models 1b, 2b, and 3b are 1-layer models, with a homogeneous wind-driven finite layer

of thickness h, at the bottom of which the velocity goes to zero:

u(t, z) −−−→
z−→h

0 ↔ U(ν, z) −−−→
z−→h

0 (15)

iii. Models 1c, 2c, and 3c are 1 and 1/2-layer models, consisting of a homogeneous

wind-driven layer of thickness h, at the bottom of which the stress and hence the

velocity shear go to zero, but non-zero velocity is still possible:

∂u(t, z)

∂z
−−−→
z−→h

0 ↔ dU(ν, z)

dz
−−−→
z−→h

0. (16)

[Price and Sundermeyer (1999) used this bottom boundary condition to study the

influence of stratification on Ekman layers.]
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d. Mathematical expressions and graphical representations

The derivations of the transfer functions for models 1a, 1b, 1c, 2a, 2b, and 2c are omitted

here because similar derivations have been published previously (e.g. Gonella, 1972; Thomas,

1975; Madsen, 1977; Weller, 1981; Lewis and Belcher, 2004). The transfer functions for

models 3a, 3b, and 3c, to the best of our knowledge, are new results but their derivation is

trivial1.

The mathematical expressions for the transfer functions of the models considered in this

study are given in Table 1. These show that the ocean’s response depends nonlinearly on the

frequency ν of the forcing, the depth z, the latitude through the Coriolis parameter f , the

water density ρ, and the vertical viscosityK. As indicated in Table 1 the depth scales for the

transfer functions (δ1 for models 1a, 1b, and 1c and δ2 for models 2a, 2b, 2c, 3a, 3b, and 3c)

depend on viscosity and frequency.

Appendix A provides further detail about the structure of the transfer functions. One

interesting characteristic of these functions is their limiting behavior when the non-dimensional

depths z/δn, (n = 1, 2) tend to zero. This situation occurs close to the surface and also

when the angular frequency of the forcing approaches the inertial angular frequency −f , as

discussed in Appendix A and Table A1.

In the Southern Hemisphere, f < 0, and the inertial frequency in cpd is −f/2π > 0. For

cyclonic (ν ≤ 0) and sub-inertial anticyclonic frequencies (0 ≤ ν < −f/2π) all of the models

indicate that the velocity is to the left of the wind stress at the surface and spirals downward

anticylonically, while for supra-inertial anticyclonic frequencies (ν > −f/2π), the velocity

is to the right of the wind stress at the surface and spirals cyclonically. The zero-frequency

ν = 0, or time-mean, velocity at the surface is consequently to the left of the mean stress

1Lewis and Belcher (2004) did consider the case of a non-vanishing K at the surface by

equivalently considering a water-side surface roughness. However, they considered a coupled

oceanic-atmosphere Ekman log-layer which has a slightly more complicated analytic solution.
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direction. Table 1.

4. Data

The Surface Velocity Program (SVP) (Siedler et al., 2001) and the ongoing Global Drifter

Program (GDP) both provide horizontal velocity data from surface drifting buoys (drifters) on

a global scale. A standard SVP drifter has a Holey-Sock drogue centered at 15-m depth, linked

by a tether to a subsurface float and a surface float that radio-transmits its positions to the

ARGOS satellite array at an uneven time rate, depending on satellite coverage and the drifter’s

setup (Sybrandy and Niiler, 1991; Niiler et al., 1995; Lumpkin and Pazos, 2007). The NOAA

Atlantic Oceanographic and Meteorological Laboratory (AOML) Drifter Assembly Center

processes the raw position data and interpolates them using a kriging procedure (Hansen and

Poulain, 1996), resulting in a time series of position x(t) and velocity ud(t,x(t)) at six-hour

intervals.

In principle, the drifter motions represent the currents averaged over the 6.1 m length

of the drogue. Vertical shear of velocity has been observed over this lengthscale from vector

measuring current meters mounted at the top and the bottom of the drogue (Niiler et al., 1995).

Here shear information was not collected, and we interpret the drifter velocities to be at the

nominal 15 m depth in our analysis.

In the Southern Ocean between 30◦S and 60◦S, 2,839 independent SVP

drogued drifter trajectories are available from November 1989 to May 2003. Undrogued

drifter data were discarded. We identified 666 trajectories from drogued drifters that were at

least 40 days long between October 1992, the first date for which AVISO altimetric maps

are available (see below), to August 2002, the date when the ECMWF ERA-40 re-analysis

ends (see below). Coastal areas are avoided by discarding the points of drifter trajectories for

which a dynamic height relative to 3000 decibars from the 1◦ gridded historical atlas data

by Gouretski and Jancke (1998) could not be interpolated linearly. When divided in 40-day

long segments that overlap by 20 days, these trajectories provide 10,387 time series segments,
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shown in in Fig. 2. These segments are further sorted in 2◦ latitudinal bands according to Figure 2.

their mean latitude (color-coded in Fig. 2). The number of segments per band is listed in

Table 2. These numbers are used to evaluate the number of degrees of freedom for the spectral

estimates, as explained in Appendix B2. Table 2.

Fig. 3a reveals the latitudinal biases, due to the decrease in data segments south of

44◦S. In Fig. 3b, the longitudinal distribution of the data segments indicates that the drifters Figure 3.

Figure 4.are primarily from the Atlantic and Indian sectors of the Southern Ocean. The temporal

distribution of the data segments (Fig. 4) suggests that the observations are weighted more

heavily toward the second half of the decade but show little seasonal bias. The drifter dataset

is also further divided into an austral winter subdataset (5,282 segments) and a summer

subdataset (5,105 segments) to study the seasonal variability. The austral winter is taken to

correspond to the months of April through September and the austral summer to the months

of October through March. The nominal month of a 40-day trajectory segment is chosen here

as the month of the median date of the segment.

In order to obtain an estimate of the absolute geostrophic velocity component of the

drifter velocities, two satellite altimetry datasets were combined. The anomalies u ′
g were

derived from “Archiving, Validation and Interpretation of Satellite Oceanographic” data

that are produced by the Centre Localisation Satellite (AVISO,1996, ). These provide

high-resolution maps (1/3◦×1/3◦ Mercator grid) by merging TOPEX/Poseidon (T/P) and

ERS-1 and -2 altimeter measurements, using an objective analysis method (Ducet et al.,

2000). These maps are available at 7-day intervals implying a Nyquist frequency of 1/14 cpd

for the geostrophic part of the signal. We computed the velocity anomalies from the zonal

and meridional gradients of the height anomalies. To these, a time-mean geostrophic velocity

ūg was added, computed from the Gravity Recovery and Climate Experiment (GRACE)

satellite-derived dynamic topography available on a global 1◦ grid (Tapley et al., 2005). This

mean geostrophic velocity field was interpolated linearly in space, and the velocity anomaly

maps were linearly interpolated in space and time, at all the drifter positions, to obtain the
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absolute geostrophic velocity u′
g + ūg at the surface every 6 hours along the drifter trajectories.

Time series of the ageostrophic velocity u at 15 meters are then obtained as the drifter

velocity minus the absolute geostrophic velocity at the surface:

u(t) = ud (t,x(t) = x0) − (u′
g (t,x0) + ūg(x0)). (17)

This neglects the geostrophic shear in the upper 15 meters of the ocean. Expendable

bathythermograph data in the Drake Passage indicate a geostrophic shear of less than 10−3

s−1 in the upper 400 meters (Janet Sprintall, personal communication), yielding a potential

maximum 1.5 cm s−1 geostrophic velocity difference between the surface and 15 meters. This

is of the same order as other sources of noise in this study.

For wind data, we use European Center for Medium-Range Weather Forecasts (ECMWF)

ERA-40 Project re-analysis wind stresses (Simmons and Gibson, 2000) obtained from the Data

Support Section of the Scientific Computing Division at the National Center for Atmospheric

Research. The zonal and meridional wind stress components are available four times daily at

the times 00, 06, 12 and 18 UTC. The values are instantaneous and are given as forecasts valid

6 hours after the re-analysis time. The data are released on a Gaussian grid with resolution

of 1.125◦ longitude by roughly 1.125◦ latitude. These grids were linearly interpolated on the

drifter positions to obtain contemporaneous six-hourly time series of wind stress τ (t).

5. Methods

a. Estimating the transfer function from the cross-spectra

We estimate the transfer function from observations using a spectral approach. The

transfer functions discussed in section 3 satisfy:

Sτu(ν, z) = H(ν, z) Sττ(ν), (18)

where Sτu is the cross-spectral density function between the wind stress and the ocean

velocity, and Sττ is the autospectral density function of the wind stress. Here rotary power
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spectral density functions are estimated by the periodogram (e.g. Bendat and Piersol, 1986),

for a finite number of frequency bands νk:

Ŝxy(νk) =
〈XkY∗

k〉
T , (19)

where 〈·〉 is the expected value operation over an ensemble of time series segments of length

T and ·∗ is the complex conjugate. Xk is the finite Fourier transform of x:

Xk(νk) =

∫ T

0

x(t) exp(−i2πνkt) dt, (20)

here computed using a standard Fast Fourier Transform algorithm.

The length of the time series segments considered here is T = 40 days with a sampling

interval∆t = 0.25 day leading toN = 160 points in time; thus the formal Nyquist frequency is

1/(2∆t) = 2 cycles per day (cpd), and the frequencies considered are νk = k/T = k/(N∆t),

positive for k = 0, . . . , N/2 and negative for k = −N/2 + 1, . . . ,−1. The frequency

resolution is theoretically νr = 1/T = 0.025 cpd, but in reality it is 50% larger (0.0375

cpd), because we applied a Hanning window to reduce spectral side-lobe leakage (Harris,

1978). Since the data are ultimately sorted in 2◦ latitudinal bands between 30◦S and 60◦S, this

resolution is sufficient to resolve the smallest difference in the inertial frequency from one

band to the next, except between the two southern-most bands.

The transfer function linking ocean velocities to wind stress is calculated from Eq. (18):

Ĥ(νk, z) =
Ŝτu(ν, z)

Ŝττ(ν)
=

〈Tk Uk
∗〉

〈Tk Tk
∗〉

, (21)

using the data sorted in 2◦ latitudinal bands.

The zero frequency component is representative of the mean wind-driven currents at

15 m, and the phase

χ̂(ν, z) =
Im(Ŝτu(ν, z))

Re(Ŝτu(ν, z))
, (22)

at zero frequency is the mean angle over 40 days between the wind stress and either drifter or

ageostrophic velocity at that depth. Table 2 lists χ̂(0) for 2◦ latitudinal bands. At all latitudes
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χ̂(0) is greater for the drifter velocity than for the ageostrophic velocity most likely because

of the oceanic eastward drift of the ACC flowing in the same direction as the atmospheric

westerlies. The variation of the mean angle with latitude is one example of latitudinal

variations in the transfer function (see below).

b. Correcting a spurious constant time lag

Transfer functions of vector quantities are computed using rotary spectra (e.g. Mooers,

1973). Rotary spectra allow us to identify the angular separation between vector quantities

but cannot distinguish differences in vector orientation from differences in temporal phasing.

We found that the phase of the transfer function depended linearly on frequency, suggesting

a constant time lag between the wind stress and drifter data. In order to investigate if this lag

was data-specific, several other types of wind products from the ERA-40 ECMWF Project

re-analyses and the NCEP/NCAR Reanalysis Project (Kalnay et al., 1996) were tested. For

the 52◦- 54◦S latitudinal band, Fig. 5 shows the cross-spectral phases χ̂. Phases slope linearly Figure 5.

with frequency for all products, but the slopes depend on the timing of the wind relative to the

drifter measurements. This indicates that the time stamp of the data must be interpreted with

care, particularly since wind products can be reported as instantaneous nowcasts, as forecasts

(so that the time stamp precedes the actual wind by 6 hours), or as time averages over 6-hour

intervals. In Fig. 5, the NCEP wind stress (black line), which is an average for the 6 hours

following the reported time, shows an expected constant time lag of 3 hours with respect to the

instantaneous ECMWF wind stress (red line), which is valid at the reported time. Surprisingly,

the ECMWF winds show tilting phase lines (red line in Fig. 5) even when there is nominally

no time separation between drifter and wind observations. A first and simple explanation for

this is that there is a spurious misalignment of the time stamps for the wind fields and the

drifter data. Therefore, as a first step, we corrected the ECMWF winds at each latitude band

for a constant time lag by least-square fitting for the phase between 0 and 1 cpd. The time lag

corrections for each band are listed in Table 2.
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c. Influence of the wind slip

Surface drifters are excellent but not perfect water-followers, and their velocities contain

an erroneous slip velocity caused by the direct action of the wind on the surface flotation

buoy. Niiler et al. (1995) carried out experiments to measure wind slip in the tropical and

northeastern Pacific. They modeled the wind slip us as:

us =
a

R
w10, (23)

where w10 is the 10-m wind velocity, R is the drag area ratio of the drogue to the other

constituents of a drifter (40 for a SVP-type drifter), and a is a regression coefficient. Since no

measurements in the field were obtained for winds stronger than 10 m s−1, this model has not

been validated for intense winds typical of the Southern Ocean: at drifter locations between

48◦S and 58◦S, the mean ECMWF reanalysis 10-m winds exceed 10 m s−1, and the wind slip

at these latitudes may be seriously underestimated (Niiler et al., 2003).

The standard wind slip (23) was computed using ECMWF 10-m winds interpolated

in time and space, and subtracted from the drifter velocities in order to obtain the wind

slip-corrected velocities. Niiler et al. (1995) found that the best-fit values of a for either of

two different types of drifter, TRISTAR or Holey-Sock (the SVP kind) were not statistically

different. As a consequence, their best estimate from the combined drifter datasets,

a = 4.63 × 10−2 is used here.

We find that in general the wind slip correction reduces the magnitude of the real

component of the transfer function, hence reducing the phase between stress and ocean

velocity at all frequencies. It is difficult to track exactly the consequences of such data

modification because the transfer functions and the optimization procedures are nonlinear.

However, a general consequence is that the bootstrap estimates (see below) of viscosity and

boundary layer depth are shifted in terms of the range of values they take, but the mean values

are not distinguishable within error bars from the estimates obtained when the wind slip

correction is not applied.
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Furthermore, in terms of signal processing, it does not make much sense to first remove

a linear fraction of the wind in the form of a wind slip correction and then subsequently

to conduct a cross-spectral analysis between the “corrected” velocity and the wind stress

(roughly proportional to the wind speed squared).

On the basis of these considerations, we have chosen here to present the results derived

without the standard wind slip correction because the general conclusions with the wind slip

correction applied are the same and the parameters estimates are within error bars.

d. The cost function

The observed transfer functions Ĥ are compared to the nine theoretical transfer functions

Hm listed in Table 1. These comparisons consist in finding the optimal parameter (or set of

parameters) to minimize the cost function L, defined by the misfit between the observed and

theoretical transfer functions:

L =
∑

νk

|Hm(νk, z) − Ĥ(νk)|× w(νk), (24)

where | · | designates the absolute value. In the theoretical transfer functions, ρ is 1027

kg m−3, the depth z is 15 m, and the Coriolis parameter, f , is computed at the center of the 2◦

latitudinal bands. The L1-norm was selected rather than the L2-norm, because it performed

better in the optimization procedure. Depending on the model considered, different algorithms

were utilized for this nonlinear optimization. Details are given in Appendix B. The weighting

function, w(νk), is here the coherence squared γ2:

w(ν) = γ2(ν) =
|Sτu(ν)|2

Sττ(ν)Suu(ν)
, (25)

and is estimated using Eq. (19). The normalized standard error of the cross-spectrum is

theoretically inversely proportional to (γ2)1/2 (Bendat and Piersol, 1986), so that the best

estimates of the cross-spectrum and hence of the transfer function are obtained when γ2 is

high and the expression for mathsfL penalizes less the frequency bands for which it is the
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case. The minimum values of L resulting from the optimization procedures are plotted in

Fig. 6d and dicussed in the next section.

Near-surface data usually show that γ2 is higher for anticyclonic frequencies than for

cyclonic frequencies, and that it is higher at subinertial frequencies (Gonella, 1972; Weller,

1981; Daniault et al., 1985; McNally et al., 1989; Niiler and Paduan, 1995; Weller and

Plueddemann, 1996; Rio and Hernandez, 2003; Elipot, 2006). Coherence is thought to

decrease at lower and higher frequencies mostly because of noise arising from other oceanic

processes such as mesoscale geostrophic eddies or free inertial waves (Weller, 1981; McNally

et al., 1989; Niiler and Paduan, 1995; Elipot, 2006). While γ 2 will be reduced by noise, we

find that we are able to produce the observed coherence fairly well a posteriori by using

the theoretical expressions for H with the parameters estimated from the fitting procedure.

Indeed, if one knows the transfer functionH, the coherence squared can be predicted from the

auto-spectra (e.g. Bendat and Piersol, 1986):

γ2(ν, z) = |H(ν, z)|2 Ŝττ(ν)

Ŝuu(ν, z)
. (26)

While the transfer function H peaks at the inertial frequency (see section 2) and the near-

surface oceanic spectrum from drifter data has an approximate constant slope at subinertial

frequencies (see e.g. Rio and Hernandez (2003); Elipot (2006)), the wind stress spectrum

shows in general a slope break followed by a slope increase at high frequencies (Gille, 2005;

Elipot, 2006). Examination of Eq. (26) reveals that this produces subinertial anticyclonic

and cyclonic peaks for γ2, as well as higher coherence for anticyclonic frequencies than for

corresponding cyclonic frequencies.

6. Results of the fits

a. What are the best models for our observations? Figure 6.

First, we assess which of the models has the smallest L, as plotted in Fig. 6d. We

account for the uncertainty δL in this cost function, as defined in Appendix B4. Even with a
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quantitative metric like our cost function, no single model clearly outperforms all others at all

latitudes.

Figs. 6a, 6b and 6c show the viscosity coefficients K0 and K1, and the boundary layer

depth h, respectively, resulting from fitting the theoretical transfer functions of the models to

the observed transfer functions in each 2◦ latitudinal band. The error bars correspond to the

mean absolute deviation from the mean of distributions drawn from a bootstrapping procedure

(see Appendix B3).

Overall, the boundary condition c (no stress at the bottom or slip condition) is not helpful

here. In all cases of vertical parameterization for K(z), the models with boundary condition

c degenerate and are equivalent (see Figs. 6a, 6b and Figs. A1, A2, A3) to the corresponding

models with boundary condition a (infinite ocean): the optimal values for h are very large,

ranging from physically acceptable for model 1c (O(103 m)) to unphysical and at the upper

limit of the depth range explored by the optimization algorithms (see Fig. 6c).

One-layer models 1b, 2b, and 3b all perform significantly better than their respective

counterparts that use the same parameterizations for K(z). South of 50◦S, model 3b is

equivalent to model 1b, because the optimal linear coefficient K1 is there indistinguishable

from 0. Figure 7.

In summary, disregarding the “failing” models 1c, 2c, and 3c, the model performances are

from best to worst: models 1b, 3b, 2b, 3a, 2a, and 1a. Revealingly, model 1a, the traditional

Ekman model that has been tested extensively in previous studies, is the worst of these models.

In the discussion that follows, we focus on the two best models: model 1b and model 3b.

b. One-layer model with constant viscosity

Model 1b, with constant viscosity, a finite-depth boundary layer and a no-slip condition,

should provide insight into the Ekman layer in the Southern Ocean. Fig. 8 shows the optimal Figure 8.

parameters for this model for year-round data, as well as for summer and winter data. All 500

bootstrap estimates of each parameter are displayed in this figure. (See Appendix B1 for a



22

discussion of the bootstrap procedure.) In some cases, the joint probability density function of

K0 and h (not shown) is bimodal rather than unimodal, meaning that there are two distinct

clusters of points in Fig. 8. This suggests different types of oceanic conditions captured by the

subsampled data, while the scatter of each mode is intrinsic random oceanic variability and

random sampling of the data.

Throughout the Southern Ocean, this model indicates values for K0 between

400× 10−4 m2 s−1 and 1180 × 10−4 m2 s−1 (right panel of Fig. 8) and values for h between

30 and 50 m. The largest values of bothK0 and h are found between 40◦S and 50◦S.

The joint distribution of bootstrap estimates of K0 and h indicate a linear relationship

between these two parameters: larger viscosities correspond to larger boundary layer

thicknesses. This is consistent with the idea that K0 represents turbulence stirred by the

wind at the ocean surface, and h results from the same wind stirring. Linear fits between

K0 and h show that in most cases the minimum boundary layer depth is 15 m in the limit

K0 → 0 since the optimization algorithm tries to force the drifter observations to be within the

boundary layer. For this model h is found to be within a few meters of δ1(0) =
√

2K0/f , the

exponential decay scale at zero frequency, which is the “depth of wind-currents” (divided by

π) defined by Ekman (1905).

When the data are sorted by seasons, the scattering of the distributions increases and at

many latitudes the probability density functions of the bootstrap estimates indicate several

modes (Fig. 8). However, the cost function is larger for the summer data than for the winter

data (not shown), which makes the summer results less reliable. A careful examination of

these distributions reveal that in general for a given value of viscosity the boundary layer is

deeper in summer than in winter, a somehow puzzling result. In conclusion, the seasonal

variability captured by this model is unclear.

Numerous studies have compared observed oceanic velocities with theoretical predictions

from constant vertical viscosity models (see Huang, 1979; Santiago-Mandujano and Firing,

1990). Oceanic conditions, datasets, assumptions and processing methods all differ in these
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studies compared with our own. Broadly speaking, our results are consistent with those of Rio

and Hernandez (2003), who also used surface drifter data and ECMWF wind stresses and who

followed Ralph and Niiler (1999) in assuming a constant vertical viscosity within the Ekman

layer. Rio and Hernandez (2003) filtered their data to retain a sub-inertial spectral band, and

our cost function emphasizes the same frequency bands, so the similarities in our results are

not surprising. Our viscosity estimates are however slightly larger but in fact closer to in situ

estimates of about 10−1 m2 s−1 found near the Polar Front in the mixed layer in periods of

strong winds (Cisewski et al., 2005).

c. One-layer model with linear viscosity with surface finite value

Model 3b has a linearly increasing viscosity with a finite non-zero value at the surface,

K(z) = K0 + K1z, and a finite boundary layer with a no-slip condition. The results and their

seasonal variations are shown in Fig. 9. This model degenerates to model 1b south of 50◦S Figure 9.

since it returns values for K1 that are not distinguishable from zero and values for K0 and h

that are not distinguishable within error bars from the values returned by model 1b. However,

when the data are sorted by seasons, some of the bootstrap estimates, especially in summer,

appear to continue the trend seen to the north of 50◦S.

North of 50◦S, the estimates of K0 average (240 ± 12) × 10−4 m2 s−1 for year-round

data, and vary little with latitude. In contrast, h varies greatly with latitude. For year-round

data north of 50◦S, h ranges between about 1400 m and 6000 m. It is smaller in summer

compared to winter, and the latitudinal dependence is more pronounced in summer. In

summer, h changes order of magnitude from north to south, increasing roughly from 350 m

at 31◦ S to 1925 m at 49◦ S. In winter, h varies between about 2000 m and 6500 m, without

clear latitudinal dependence. The implications of such values for h, some unphysical, are

discussed in the next section. Estimates ofK1 (lower left panel of Fig. 9) to the north of 50◦S

range between 0.3 and 0.9 cm s−1 for year-round data. Two trends are noted for K1. First,

for year-round data, it increases by a factor 2.5 from north to south. Second, it increases from
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summer to winter by a factor 1.5 to the south and by 5.5 to the north. As discussed in the next

section, the parameterK1 is actually a friction velocity scale related to the wind stress.

Two-dimensional scatter plots of K0 and K1 of bootstrap estimates for each latitudinal

bands and seasons (not shown) reveal a linear dependency between these two parameters.

The larger K0 is, the smallerK1. This is discussed in the next section. On the other hand, no

relationship was found between h and either K0 or K1. This suggest that the parameter h in

this model captures a different signal in the data than do theK0 or K1 parameters.

7. Discussion

We are now left with two plausible models for the Ekman layer in the Southern Ocean,

with two different parameterizations of the vertical viscosity. How do the parameters fitted for

models 1b and 3b vary with respect to other environmental factors and what is their physical

significance?

a. The relationship with the wind stress

The wind stress is the only forcing for Ekman models. Thus one might expectK and h to

ressemble the wind stress. For a stable planetary boundary layer, the relevant planetary scale

is u∗/f , where u∗ =
√

|τ |/ρ is the friction velocity scale. Fig. 10a shows u∗/f and Fig. 10b

shows u∗ derived from the ECMWF wind stress. Since these scales are evaluated from the

mean of the values of wind stress interpolated at the drifter locations, they should reflect the

same seasonal and geographical variability. The most noticeable feature in these two scales is

that the seasonal variability disappears south of 48◦S. This is also the case for the viscosity

scale u2
∗/f (not shown).

While model 1b provides the best match to the observed transfer functions, its optimal

parameters h and K0 show little of the latitudinal and seasonal variability that appears in the

wind stress. This suggests that model 1b does not account for wind variability that should be

important in the Ekman layer. Despite providing no simple dynamical insights, the optimal h
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and K0 are within scaling ranges found in numerical studies of a neutrally stratified turbulent

Ekman layer by Coleman et al. (1990). Our data show the latitudinally averaged ratio of h

to u∗/f for model 1b to be 0.32 for all data, 0.27 in winter and 0.45 in summer, comparable

to the range 0.25-0.4 found in numerical simulations. Similarly for model 1b, we found the

average ratio of K0 to the viscosity scale u2
∗/f to be 0.05 for all data, 0.04 in winter and 0.05

in summer, comparable to Coleman et al.’s range 0.03-0.08.

For model 3b, the second best model, optimal K1’s and ECMWF u∗’s are plotted in

Fig. 10b. From Fig. 10b, the coefficient K1, which has the units of a velocity, appears related

to the wind stress. For models with linear viscosity, the linear coefficient is usually written

K1 = κu∗ (Thomas, 1975; Madsen, 1977), where κ is the Von Karman constant. Madsen

(1977) assumed κ = 0.4, but in the ocean or the atmosphere it is thought to be variable

(Tennekes, 1973). From our data (Fig. 10b), K1/u∗ = 0.52 for all data, 0.64 in winter,

and 0.33 in summer. In both seasons, this ratio increases with latitude. This suggests that

while K1 scales like u∗, a universal Von Karman constant of 0.4 is inadequate to explain the

observations. If this model is of any use, it is unprecedented to obtain quantitative comparisons

between estimates ofK1 and u∗ on such large scales in the ocean.

b. The influence of stratification

When a slab layer model is used to simulate upper-ocean wind-driven velocity (Pollard

and Millard, 1970) or to estimate the wind energy input to the mixed layer (D’Asaro,

1985; Alford, 2001), it is assumed that the wind momentum input is deposited uniformly

throughout the wind-driven layer as a body force and this implies that the vertical profile

of the wind-induced Reynolds or turbulent stress is linear. In these cases, the depth of the

wind-driven “mixed-layer” is prescribed, maybe by a pre-existing stratification. The energy

is removed from the system by adding in the momentum equation a linear drag term that is

supposed to be representative of radiation of energy out of the mixed/wind-driven layer. The

drag coefficient is typically tuned to match the velocity observations but it has been shown
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that this typically over-estimates the wind energy input (Plueddemann and Farrar, 2006). In

contrast, in an Ekman model, the wind-induced stress is a non-linear function of depth and

is not associated with a constant body force per unit mass. In that case, energy is removed

from the system only by dissipation through the shear induced stress and do not model the

downward radiation of energy by internal waves or the deeepening of the mixed-layer and this

is clearly a limitation of such models when modeling the real ocean..

In contrast to Ekman or slab models, boundary layer models that explicitly incorporate

buoyancy forcing deposit momentum to a “surface layer” or shallowest layer. This is the

case in KPP when used in z-coordinate level OGCMs (e.g. Zhang and Zebiak, 2002). Then,

the depth over which the vertical viscosity is enhanced by the wind momentum input, the

BLD, is diagnosed by a criterion based on a bulk Richardson number Rib relative to the top

most layer of the numerical model. The simple idea is that the stratification limits the vertical

penetration of wind-induced stirring. However, Zhang and Zebiak (2002) modified the KPP

scheme in a simulation of the Tropical Pacific in order to allow the wind momentum input

to be deposited as a body force over the whole BLD or MLD and showed that the numerical

model was subsequently more realistic for the surface and sub-surface current patterns in the

Tropical Pacific.

In summary, two possible scenarios scenario are usually considered: either momentum

input is restricted to the mixed-layer in slab models, or it penetrates without restriction in

Ekman models. We suspect that intermediate conditions between these two extremes [like

in Zhang and Zebiak (2002)] may prevail in the Southern Ocean, a situation in which the

wind-induced stress penetrates deeper that the surface layer (in the KPP sense) or even the

mixed layer but should be also nevertheless be conditioned by the local stratification.

How large one expects the MLD or the BLD to be in the Southern Ocean? Large et al.

(1997) diagnosed MLDs and BLDs established by the KPP scheme in a run of an OGCM with

coarse resolution. In the Southern Ocean, they found that these two depths were comparable

for their monthly averages and of O(102 m) for the month of September between 30◦S and
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60◦S (their Figure 12). However, on much shorter time scales when the stirring by the wind is

intense, they note that the BLD could be much greater than a MLD defined as an isothermal

layer. For this study we also compared the observed transfer functions to transfer functions

derived from a cubic profile of the vertical viscosity, the formulation implemented in KPP.

No analytic expression is available for the cubic profile transfer function, so we solved

numerically. The resulting viscosity estimates were indistinguishable from the estimates

obtained by the linear viscosity models, because our estimated BLD was unphysically large

O(104 m) and the cubic profile approximated a linear profile near the surface like models 3.

We conclude that increasing the order of the dependence of the vertical viscosity on the depth

is not sufficient to model properly the observations and that it is needed to model the influence

of stratification.

For the Ekman models considered here, our optimization procedure only restricts the

BLD to be less than 104 m and the optimal BLD obtained for model 3b are dubiously large and

of order O(103 m) and even at some latitude larger than the water depth; a simple explanation

is that such models are unable to extract enough energy from the system and set the boundary

layer to be extremely deep to accomodate such a great wind energy input. A conclusion is that

stratification plays a role for what the observations of velocity are, and this could be a serious

downfall of the simple Ekman models considered here.

However, we hypothesize that the stratification implicitly influence the results returned

by the current Ekman models by conditioning their BLD parameters. But first, if the MLD

is defined by a temperature difference criteria from the surface so that the mixed layer can

really be more accurately described as an isothermal layer, then the MLD and BLD h should

not necessarily be expected to be equal since the vertical diffusivities differ for temperature,

buoyancy and momentum. Indeed, substantial shear can be observed within an isothermal

layer (e.g. Davis et al., 1981). For our purpose, the climatological MLD determined from

density profiles (Dong et al., 2008) was interpolated in space and time to the drifter positions.

Mean values are plotted in Fig. 10a, as a function of latitude and season. MLD and h from the
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drifters data differ by an order of magnitude, with MLD being O(100 m) and h O(1000 m).

Nonetheless, both exhibit common latitudinal and seasonal trends.

Interestingly, the depth scale δ2 at zero frequency (filled symbols in Fig. 10a) is close to

the mean values of the MLD. This correspondence is found not only for year-round data but

also for seasonally sorted data. Whereas δ1(0) for models 1a, 1b, and 1c is a familiar scale Figure 10.

of exponential decay, δ2(0) appears in a complicated manner in the expression of the transfer

function for model 3b. We computed the ratio of the absolute value of the transfer function at

the depth z = δ2(0) to the surface value, which is also the ratio of the velocity magnitudes at

the same depths, using the optimum parameters. At the depth z = δ2(0), the current speed is

about 15% of its surface value at 50◦S, a percentage which increases to about 32% at 31◦S,

which is to say that the shear is large and velocities greatly reduced at the “Ekman depth”.

Overall, the model 3b results suggest that the wind-driven velocities penetrate deeper

than the depth of the mixed layer but that the mixed-layer depth nevertheless controls the

Ekman scale of the model.

c. Speculation about the sea surface roughness

The atmospheric boundary layer and the oceanic boundary layer interact with each other

and create roughness along their interface (e.g. Melville, 1977). For the ocean, the roughness

length z0 is expected to be representative of the thickness of an unresolved, wave-enhanced

sub-layer (Craig and Banner, 1994), just below the surface. Possible scalings for z0 found

in the literature include the significant wave height (e.g. Terray et al., 1996), some multiple

of u2
∗/g where g is the gravitational acceleration, or the wavelength of the waves (Craig

and Banner, 1994). The length z0 needs to be considered in order to model correctly the

vertical velocity profile as one approaches the boundary. Although models 2a, 2b, and 2c

(with viscosity K(z) = K1z) have kinematic characteristics that can partially explain the

frequency-dependent vertical structure of the Ekman layer (see Appendix A), zero values of

K at the surface lead to a singularity. Resolving this led to the consideration of models 3a,
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3b, and 3c with viscosityK(z) = K0 + K1z which is equivalent to introducing the roughness

length z0 by assuming that a finite value of the viscosity existed at the surface that could be

writtenK0 = z0 × K1.

For models 3a, 3b, and 3c, the optimization procedure was set up to conduct a search

of the two parameters K0 and K1, which are assumed to be independent. They were found

however to be linearly dependent, supporting the view that a linear coefficient like the

roughness length parameter could have physical meaning. Fig. 11 shows z0, computed from

the optimal estimates of K0 and K1 for model 3b. Interestingly, the roughness parameter is Figure 11.

larger in the austral summer than it is in the austral winter, which is mostly a consequence

of the seasonal variations of K1. An examination of Fig. 11 suggests no clear relationship

between z0 and MLD, wind stress, or the Coriolis parameter.

8. Summary

This paper has studied the frequency response of the ocean boundary layer to wind stress

forcing. We used a series of Ekman-type models, so named because no explicit buoyancy

forcing is considered and the turbulent vertical flux of horizontal momentum is parameterized

by a first-order turbulence closure as first proposed by Ekman (1905) for the ocean. Such

models could be seen as no more than an exercise in ocean physics but they are however

extensively referenced in physical oceanography. Moreover they have not been fully exploited,

especially to gain insight into the frequency response of the upper ocean.

Three vertical profiles for the vertical viscosity are considered: a constant profile, a linear

profile increasing with depth from zero at the surface and a linear profile increasing with depth

from a finite value at the surface. Three boundary conditions for the bottom of the oceanic

boundary layer are considered: an infinite depth layer with vanishing velocity at infinite depth,

a finite depth layer at the bottom of which the velocity vanishes and a finite depth layer at the

bottom of which the stress vanishes. The combination of these cases leads to nine different

models.
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The frequency response of each of these models is described by the transfer functionH,

which is a function of the depth. At each frequency, the phase ofH gives the deflection angle

of the oceanic velocity with respect to the instantaneous wind stress, and the magnitude ofH

indicates the magnitude of the oceanic velocity for a 1 N m−2 wind stress.

We used surface drifter data, altimetry, and reanalysis winds to estimate the transfer

function linking wind stress to the ocean velocity at 15 m depth in the Southern Ocean, from

30◦S to 60◦S in 2◦ latitudinal bands. The observed transfer functions are compared to the

theoretical transfer function and the basis of these comparisons are used to elucidate the

structure of the Ekman layer. We have further explored the two models that best explain the

observed transfer functions.

The best model to describe the frequency response in terms of velocity at 15 m depth

to wind stress forcing in the Southern Ocean is a one-layer model with a constant vertical

viscosity. From 60◦S to 50◦S, the boundary layer is shallow, of O(30-35) m, the viscosity is

constant, averaging at 724 × 10−4 m2 s−1 and shows small seasonal variations of the order of

± 15%. These latitudes correspond to the largest wind zonally-averaged stress values in the

Southern Ocean with little seasonal variations. From 50◦S to 40◦S, the boundary layer is best

described by a slightly deeper layer O(45-50) m, with associated increased constant vertical

viscosity reaching over 1000 m2 s−1, however with very little seasonal variability. From

40◦S to 30◦S, the boundary layer is shallower again, O(35) m, and the viscosity is smaller,

averaging 474 × 10−4 m2 s−1 .

An alternate, more dynamically consistent description of the Ekman layer is given by a

one-layer model with a vertical viscosity that increases linearly with depth from a finite value

at the surface. This model can be well fitted to the data only from 30◦S to 50◦S. South of

these latitudes, only re-sampling of the data by bootstrapping suggests that this model could

still be adequate to explain the drifter observations. This model indicates that the boundary

layer is actually much deeper than the mixed layer, but the order of magnitude O(103 m) is

questionable and could be indicating that the quantity in question is no more than a model
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parameter with limited physical meaning. This boundary layer parameter seems influenced by

the latitudinal and seasonal variations of the wind stress, suggesting the boundary layer to be

deeper in winter and at latitudes where the wind is the strongest. Within this layer, the linear

componentK1 of the vertical viscosity is of O(10−3-10−2 m s−1) and seems also influenced by

the wind stress and would scale like the friction velocity, following its seasonal and latitudinal

variations. The value of the viscosity at the surface ranges between 10−2 and 4 × 10−2

m2 s−1 and does not show obvious dependence on latitude, wind stress or MLD. Finally, this

model suggests that the time-mean Ekman depth scale K1/f is close to the seasonally and

latitudinally varying climatological MLD.
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Appendix A: Limiting behavior of the transfer functions

The frequency and depth dependence of the transfer functions can be illustrated

graphically. Fig. A1 shows the transfer functions for models 1a, 1b, 1c, Fig. A2 for models

2a, 2b, 2c, and Fig. A3 for models 3a, 3b, 3c. These transfer functions are evaluated with

numerical values for the viscosity K and the boundary layer depth h, chosen as optimal

parameter fits for Southern Ocean observations (see section 6) in the 40-42 ◦S latitudinal

band. The plots shown here are representative examples of the zonally-averaged OBL in the

Southern Ocean. Frequencies are plotted from -2 cycles per day (cpd) to 2 cpd, since the

6-hourly data have a Nyquist frequency of 2 cpd. The vertical variation of the transfer function
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is plotted as a line, color-coded by frequency. Each curve in these figures is analogous to the

velocity hodograph as a function of depth, or what could be called an Ekman “spiral”. The

colored dots (on the lines in Fig. A1 or projected on the (x, y, h) plane in Figs. A2 and A3)

give the transfer functions at 15 m for each frequency band. The observed transfer function at

15 m estimated from the data in the 40-42 ◦S latitudinal band is plotted on the (x, y) plane

in the lower-right panels of Figs. A1, A2, and A3. For models 1a, 1b, 1c and 3a, 3b, 3c the

transfer function at the surface as a function of frequency are plotted with gray curves. For

model 1c, the transfer function at the bottom of the boundary layer is also drawn (lower-left

panel of Fig. A1).

A1. Constant eddy viscosity models

For K = K0 (models 1a, 1b, and 1c), the general solution of Eq. (12) is

U(ν, z) = A(ν)e−αz + B(ν)e+αz with α =

√

i

(
2πν + f

K0

)
,

where A(ν) and B(ν) are determined by the boundary conditions. The transfer functions for

models 1a and 1c were first derived by Gonella (1972). (See Appendix B of Elipot (2006) for

a correction of typographic errors in Gonella’s paper and demonstration of equality between

his and our mathematical expressions.)

The steady case for model 1a is obtained from the expression in Table 1 by setting ν = 0.

This gives the “classic” time-invariant Ekman spiral solution:

u(z) =
τ (0)

ρ
√

K0f
e−iπ/4e−z(1 + i)/δe ,

where

δe =

√
2K0

f
, (A1)

is the exponential decay scale. DE = π|δe| is the “Depth of Wind-currents” defined by Ekman

(1905), which is the depth at which the velocity is opposite in direction to the velocity at the

surface.
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At non-zero frequencies, the exponential decay scale is modified and we define a

frequency-dependent “Ekman depth”:

δ1(ν) =

√
2K0

2πν + f
, δ1(0) = δe. (A2)

|δ1| represents the penetration depth of the wind-driven currents, which increases with the

square root of K0, since a larger viscosity is expected to be representative of more vigorous

turbulence, and is inversely proportional to the square root of the “wind rotation” ν ∗ = 2πν+f

(Crawford and Large, 1996). Frequency ν∗ is a measure of the relative rotation in the local

reference frame at the cyclonic frequency f/2π (units of s−1). When the frequency is inertial

(ν = −f/2π ), |δ1| goes to infinity. Figure A1.

The transfer functions for models 1a, 1b, 1c (first row of Table 1) are written in a way

that emphasizes the angular separation at the surface. Table 1 shows that model 1a has an

angular separation at the surface of ±π/4 for all frequencies, and it increases with depth,

anticyclonically for sub-inertial frequencies and cyclonically for supra-inertial frequencies.

For models 1b and 1c, the deflection angle is influenced by the finite thickness h of the

boundary layer and can therefore differ substantially from π/4 at the surface.

We examine the behavior of the transfer functions near the inertial frequency, in the

limit where 2πν → −f . For model 1a, the velocity at all depths is predicted to be nearly

oriented at ±π/4 from the wind stress (see Table A1), and the magnitude of the response has Table A1.

an unbounded resonance. Model 1b and model 1c near-inertial behaviors are very different

(see Table A1), and this emphasizes that choosing the right bottom boundary condition is

potentially crucial for modeling high-frequency wind-driven currents. For model 1b, the

inertial resonance is finite and downwind at all depths, and the vertical shear is constant. The

inertial surface drift scales like h and inversely withK0. In contrast, for model 1c, the inertial

resonance is infinite, the shear is zero, and velocities at all depths are at right angles to the

wind direction. The transfer function scales inversely to h and is independent of the viscosity.

This is an inertial slab-like behavior but since the shear is zero, there is no dissipation term to
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remove energy from the system. This forced inertial “mode” of motion is unlikely to represent

real oceanic processes. Similarly, Lewis and Belcher (2004) found in the time dependent

solution for model 1c that an undamped mode oscillating at the inertial frequency is excited

when an impulsive stress is imposed on an ocean originally at rest, and they consequently

abandoned this model as being unphysical. In section 6, we find that this model performs

poorly, most likely because the data indicate a downwind inertial response.

A2. Linear viscosity models

For K = K1z (models 2a, 2b, 2c), the general solution of Eq. (12) is:

U(ν, z) = A(ν)I0

(
2

√
iz

δ2

)
+ B(ν)K0

(
2

√
iz

δ2

)
,

where In and Kn are the nth-order modified Bessel functions of the first and second kind,

respectively, and

δ2(ν) =
K1

2πν + f
, (A3)

is a new frequency-dependent Ekman depth for models 2a, 2b, and 2c (and also for models

3a, 3b, 3c) that goes to infinity at the inertial frequency. A(ν) and B(ν) are determined by

the boundary conditions. The surface boundary condition (13) is taken as the limit using

first-order approximations for the derivatives of the Bessel functions (Madsen, 1977). The

mathematical expressions of the transfer functions for these models are given in the second

row of Table 1 for the three bottom boundary conditions. Madsen (1977) and Lewis and Figure A2.

Belcher (2004) both derived the transfer function for model 2a in Laplace transform form and

inverted it to obtain the time dependent solution in the oceanic boundary layer.

The behaviors as z/δ2 → 0 are summarized in Table A1. These are obtained by retaining

the first term of a series expansion for K0 around 0 (see Table A2). For model 2a, the Table A2.

imaginary part of the transfer function (the crosswind component of velocity) tends to a

constant, while the real part (the downwind velocity component) is logarithmic and eventually

goes to infinity. Model 2b presents a rather different limiting behavior than model 2a: it
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predicts that near the surface, the oceanic boundary layer behaves like a logarithmic layer

and that there is no cross-wind component for the inertial response. The limiting behavior

of model 2c is a combination of the limiting behavior of model 2a and model 1c: it has a

logarithmic downwind component with a constant cross-wind component and also includes an

“inertial” mode at right angles to the wind that is independent of the viscosity but dependent

on the boundary layer depth. In section 6 we find that that model 2c fails in the sense that

fitted values for h are physically too large.

For models 2a, 2b, 2c the singularity at z = 0 is inconvenient, because the surface

velocity is not defined. In order to obtain this surface “drift”, Madsen (1977) evaluated the

velocity at a depth z0 from the theoretical surface. This distance is called the roughness length

and for the case of an OBL could correspond to an unresolved sub-layer just beneath the

surface where turbulence caused by waves (breaking or not) occurs. The size of z0 is subject

to much debate (e.g. Stips et al., 2005). Reviewing field and laboratory experiments, Madsen

(1977) used a length of O(10−2 m) and found that only the order of magnitude was relevant

since a multiplicative factor of 2 for z0 changed the surface drift magnitude and angle by only

10%. In section 6, we find that the fitted values for the linear coefficient K1 in the Southern

Ocean are one to two orders of magnitude larger than those used by Madsen (1977), so that

the surface drift is much more sensitive to the choice of z0. Moreover, selecting the surface

roughness a posteriori can be seen to be inconsistent (Lewis and Belcher, 2004), because in

this case the roughness is no longer compatible with the surface boundary condition for the

stress (13). This difficulty is avoided by the next family of models.

A3. Linear viscosity models with finite surface value

When the viscosity profile is

K = K0 + K1z = K1(z0 + z),
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the general solution to Eq. (12) is:

U(ν, z) = A(ν) I0



2

√
i(z0 + z)

δ2



 + B(ν)K0



2

√
i(z0 + z)

δ2



 ,

where δ2 is defined by Eq. (A3). Mathematical expressions of the transfer functions for this

family of models are given in the third row of Table 1 and graphical representations are given

in Fig. A3. The frequency-dependent Ekman scale δ2 appears only within the argument of the

Bessel functions.

The parameter z0 = K0/K1 eliminates the singularity at the surface as z goes to zero. At

the surface, in contrast to models 2a, 2b, and 2c the transfer functions for models 3a, 3b, and

3c are defined and take on finite values. As a consequence, their limiting behaviors are the

same as for models 2a, 2b, and 2c but with z augmented by z0 (see Table A1).

For models 3a, 3b, and 3c, the ratio z0 can also be interpreted as a surface roughness

length. It is hypothesized to be related to the properties of surface gravity waves, e.g. to be

representative of the penetration depth of turbulence bursts input by waves (Csanady, 1997).

In section 7 of this study, estimates of this length scale z0 are provided. Further investigations

(beyond the scope of this study) could relate these estimates to other environmental parameters

like significant wave height or wavelengths of surface gravity waves. Figure A3.

Appendix B: Optimization and error analysis

B1. Bootstrapping

We implemented a bootstrap method (Efron and Gong, 1983) in order to infer the

sample variance of the transfer function estimates and to assign uncertainties to our optimum

parameters.

For each latitudinal band, the N segments (listed in Table 2) were randomly re-sampled

to obtain a bootstrap sample containing N segments but allowing for repetition. A total of

M = 500 bootstrap samples were drawn in this way and subsequently M estimates Ĥk,

k = 1 . . .M , of the transfer function were computed by the periodogram method.
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B2. Error estimates for the transfer function

Estimates of the transfer function have random errors inherent to the spectral estimation.

Bendat and Piersol (1986) provide approximate formulae for the variances and normalized

random errors of the magnitude and phase of the transfer function. However, we obtain here

estimates of the sample variance of the transfer function from the bootstrap samples:

Var[|Ĥ|] =
1

M − 1

k=M∑

k=1

(Hk − Hk)(Hk − Hk)
∗,

where (·) = 1
M

∑k=M
k=1 (·)k is the sample mean estimate. This variance estimate is then used to

compute the standard error of the mean for the magnitude of the transfer function as a function

of frequency:

δ
[
|Ĥ(ν)|

]
=

√
Var[|Ĥ(ν)|]

Neff
,

where Neff is the effective number of degrees of freedom (DOF). Neff in each latitudinal band

is less than the number of segments N listed in Table 2 because of the 50% overlap and the

Hanning windowing of the time series segments, and is theoretically asymptotically reduced

by 25% as N → +∞ (Harris, 1978). This approximation is expected to work well here,

because the smallest number of segments used to compute spectral estimates (at 59◦S in the

summer) is still greater than 50.

B3. Algorithms for the optimization procedure and uncertainties for the optimum parameters

We selected parameter limits for the optimization procedure for each specific model.

These ones are listed in Table B1. For h, the lower bound was taken as the physical limit

of 0 m for an oceanic boundary layer. For the upper bound, we chose the limit 104 m to be

consistent with an expected order of magnitude of 103 m for a wind-driven layer. For K0 and

K1 we limited ourselves to the [0, 3] m s−1 or m2 s−1 intervals. Because the parameter space

to explore was large and sometimes several local minima for the cost function existed, we

implemented different optimization algorithms depending on the model. In some cases, we
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used the multidimensional unconstrained nonlinear minimization or Nelder-Mead simplex

method (Nelder and Mead, 1965), coded in the fminsearchMATLAB function. In order to

constrain this algorithm to the chosen parameter space, we added extra penalities to the cost

function to prevent the parameters from wandered straying outside their assigned limits. When

several minima appeared, we used the Nelder-Mead algorithm augmented by a simulated

annealing procedure step (Press et al., 1988), using the function simannealingSB from the

Systems Biology Toolbox for MATLAB (Schmidt and Jirstrand, 2005). The parameters used

for the simulated annealing algorithm are listed in the caption of Table B1. For model 1b, the

optimization algorithm was restarted from its first result set to ensure exhaustiveness in the

space search.

The optimization procedure for each model was run for the estimate of the transfer

function Ĥ computed from the N segments in each latitudinal band, and then run on each of

the M Ĥk bootstrap samples. The distribution of the M optimum values for each parameter

was used to assess the uncertainty in the estimates. In some cases listed in Table B1 (see the

“Results distribution” entry line), the joint probability density functions (pdf) showed several

modes with approximately the same corresponding cost function value. For these cases, the

most probable mode was isolated. Then, the uncertainties were derived from the distribution

around these modes and we chose the error bars for any of optimum parameter x in Figs. 6a, b

and c to be the mean absolute deviation from x:

error =
1

M∗

k=M∗∑

k=1

|xk − x| ,

where M∗ ≤ M is the actual number of optimum parameter values retained for the error

estimates. In most cases, the optimum parameters obtained from Ĥ were indistinguishable

within the error from the mean of optimum parameters from the bootstrap estimates Ĥk.

However, in a few cases, the overall optimum parameters differed from the mean bootstrap

parameters estimates by more than twice the error. In these cases, the overall optimum

parameters belonged to another less probable mode of the joint pdf. The results presented here
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are the mean of the retained optimum parameters from the bootstrap samples.

B4. Criteria for terminating the optimization procedure

The Nelder-Mead algorithm is a direct search method commonly employed in non-linear

optimization (Nelder and Mead, 1965) and extensively reviewed elsewhere (e.g. Press et al.,

1988). For this algorithm, the first termination criterion is related to a function tolerance,

the amount by which the algorithm might be expected to reduce the cost function L at each

iteration in the optimization algorithm. First, the variance of the estimated transfer function Ĥ

is used to estimate the uncertainty in L, by propagating errors through the calculation:

δL =
∑

νk

δ
[
|Ĥ(νk)|

]
× γ̂2(νk), (B1)

where the summation is over the frequency range. In the Southern Ocean we found δL to be

less than 2 × 10−2 for latitudes lower than 46◦S and to increase monotonically polewards

reaching a maximum of 0.11 at 59◦S. This maximum δL is used as an upper bound value

for the function tolerance. When decreases in L fall below δL, further improvements in the

optimized parameters are not expected to exceed the uncertainties in the calculations, and the

optimization should be terminated. The second criterion for the termination of the algorithm

is that the diameter of an n-dimension simplex (where n is the number of dimension of the

search space) be less than a tolerance value (10−5). We found that this was the controlling

criteria in terminating the optimizations and that setting the tolerance function to 2 × 10−2 or

less did not change our results significantly. Thus we selected 10−2 as the function tolerance. Table B1.
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Figure Captions

Figure 1. Schematics of the models. Black curves: velocity profiles. Gray curves: K profiles.

K = K0: models 1a, 1b, 1c; K = K1z, models 2a, 2b, 2c;K = K0 + K1z, models 3a, 3b, 3c.

Figure 2. (a) Drifter trajectory segments used in this study between 30◦S and 60◦S. The 40-day

segments are colored according to their mean latitude, following a repeated 5-class qualitative

colormap to distinguish one 2◦ latitudinal band from the next.

Figure 3. (a) Latitudinal distribution and (b) longitudinal distribution of the median dates of

the of the 20-day overlapping 40-day drifter trajectory segments.

Figure 4. (a) Month distribution of the median dates, and (b) year distribution of the mean

latitude of the 20-day overlapping 40-day drifter trajectory segments used in this study.

Figure 5. Phase of the cross-spectrum between the drifter ageostrophic velocities and various

wind and wind stress data for the data in the 52◦- 54◦S latitudinal band. ECMWF stress,

ECMWF 10-m wind and NCEP 10-m wind are instantaneous values valid at the drifter time.

NCEP stress -6h is the average value valid over the previous 6 hours before the drifter time.

NCEP stress is the average value valid over the next 6 hours starting from the drifter time.

Average NCEP stress is the arithmetic average of these last two values. ECMWF stress -6h

is the instantaneous stress value valid 6 hours before the drifter time. A positive phase means

that the ocean velocity is to the left of the wind. A positive linear slope of the phase indicates

that the wind lags the ocean velocities. In the order of the legend, the linear dependence of the

phase on frequency between 0 and 1 cpd converted to a constant time lag in hours of the wind

product with respect to the ocean velocity are: 1.62, 4.69, -1.36, 1.68, 1.77, 1.26, 7.64.
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Figure 6. a) K0 estimates for models 1a, 1b, 1c, 3a, 3b, and 3c. b) K1 estimates for models

2a, 2b, 2c, 3a, 3b, and 3c. c) h estimates for models 1b, 1c, 2b, 2c, 3b, 3c. The error bars

correspond to plus or minus the mean absolute difference from the mean (see Appendix B3).

d) Minimized cost function L in arbitrary units. Values plotted correspond to the mean value

of L from 500 bootstrap samples (see Appendix B3)

Figure 7. Average cost function values for all data (left panel), data south of 50◦S (middle

panel) and data to the north of 50◦S (right panel). Error bars are plus or minus the latitudinally

averaged standard error for the cost function as derived in appendix B.

Figure 8. Boundary layer depth h and vertical viscosity K0 for model 1b. The results for

year-round data are plotted in black, for summer in red and for winter in blue. The overall

optimum parameters are plotted with white-filled symbols and the bootstrap distributions are

plotted with colored dots.

Figure 9. Boundary layer depth h and vertical viscosity coefficients for model 3b. The results

for year-round are plotted in black, for summer in red and for winter in blue. The overall

optimum parameters are plotted with white-filled symbols and the bootstrap distributions are

plotted with colored dots.

Figure 10. a) Filled symbols are δ2(0) for all data (black), summer data (red) and winter data

(blue) The planetary scale, u∗/f , is computed from the mean of the wind stress interpolated on

the drifter positions (see text). The magenta curves with seasonal symbols are the MLD from

Dong et al. (2008). b) K1 for model 3b and friction velocity u∗. Symbols for seasons are: +

all data,, winter data, ◦ summer data. The error bars for MLD, u∗ and u∗/f are the standard

error of the mean. The error bars for δ2(0) are obtained by formally propagating the errors

fromK0 andK1 taken as the mean of the absolute differences between the bootstrap estimates

and the overall most probable estimate.
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Figure 11. Sea surface roughness estimates z0 = K0/K1 in 2◦ latitudinal bands for models 3b.

Note that no overall optimum estimates cannot be obtained south of 50◦S since the optimum

K1 ≈ 0.

Figure A1. Transfer functions for model 1a with K0 = 574 × 10−4 m2 s−1 ; model 1b with

K0 = 106 × 10−4 m2 s−1 and h = 51 m; model 1c with K0 = 558 × 10−4 m2 s−1 and

h = 1528 m; f = −0.95 × 10−4 s−1 corresponding to 41◦S and an inertial frequency of ap-

proximately 1.3 cpd. Each curve is the transfer function as a function of depth for frequencies

ν = −1.95 . . . 1.95 cpd at 0.05 cpd interval, with lines color-coded by frequency. The black

curves are the transfer functions at the zero-frequency. The transfer function at 15 m is indi-

cated by a colored dot on each curve for each model. The gray curve joins the z = 0 m points

for all frequencies for models 1a, 1b and 1c. For model 1c a gray curve also joins the z = h

points. The dotted lines indicate the x and y axes and the ± 45◦ directions.The lower-right

panel is the observed transfer function at 15 m in the 41◦S zonal band.

Figure A2. Transfer functions for model 2a with K1 = 0.77 × 10−2 m s−1 ; model 2b with

K1 = 0.42×10−2m s−1 and h = 56m; model 2c withK0 = 0.77×10−2 m s−1 and hO(104) m;

f = −0.95 × 10−4 s−1 corresponding to 41◦S and an inertial frequency of approximately 1.3

cpd. See also the caption for Fig. A1. The theoretical transfer functions at 15 m depth are

projected on the plane coinciding with the bottom of the axes. The real part of the transfer

functions at ν = 0 is projected on the (x,z) plane and the imaginary part on the (y,z) plane and

these curves are drawn in black. Since these transfer functions are not defined at the surface,

the curves curves start at the depth z = −0.1 m. The lower-right panel is the observed transfer

function at 15 m in the 41◦S zonal band.
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Figure A3. Transfer functions for model 3a withK0 = 205×10−4 m2 s−1 ,K1 = 0.71×10−2

m s−1 ; model 3b with K0 = 203 × 10−4 m2 s−1 , K1 = 0.72 × 10−2 m s−1 and h O(103)

m; model 3c with K0 = 217 × 10−4 m2 s−1 , K1 = 0.71 × 10−2 m s−1 and h O(104) m;

f = −0.95 × 10−4 s−1 corresponding to 41◦S and an inertial frequency of approximately 1.3

cpd. The transfer function at the surface is plotted with a gray curve projected on the plane

coinciding with the bottom of the axes. The lower-right panel is the observed transfer function

at 15 m in the 41◦S zonal band. See also the captions of Fig. A1 and A2.
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Tables

Table 1. Mathematical expressions for the transfer functionsH(ν, z). δ1 =
√

2K0/(2πν + f).

δ2 = K1/(2πν + f). In and Kn are the nth-order modified Bessel functions of the first and

second kind, respectively. For conciseness in the following table ζ(x) = 2
√

i(z0 + x)/δ2

K(z) a - infinite layer b - one layer c - one and a half layer
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Table 2. Characteristics of trajectory segments per 2◦ latitudinal band. The lag is discussed

in section 4. χ(0) is the mean angle between the wind stress and drifter velocities ud or

ageostrophic velocities u.

Latitudes Number of segments Lag (◦cpd−1) χ(0) (◦)

all summer winter ud u

30-32◦S 723 361 362 41.53 42.58 46.13

32-34◦S 1080 570 510 48.36 29.45 37.88

34-36◦S 1124 587 537 39.01 28.68 35.69

36-38◦S 1045 525 520 36.43 27.85 33.86

38-40◦S 1076 505 571 37.95 20.09 27.24

40-42◦S 1172 569 603 34.77 16.87 33.18

42-44◦S 1019 542 477 29.68 15.30 39.68

44-46◦S 848 397 451 27.82 17.23 33.31

46-48◦S 622 279 343 28.26 17.59 34.17

48-50◦S 543 261 282 22.56 16.88 27.80

50-52◦S 363 167 196 26.63 15.83 25.80

52-54◦S 279 105 174 23.54 21.32 35.29

54-56◦S 222 118 104 30.81 16.44 28.44

56-58◦S 143 65 78 29.93 17.71 26.71

58-60◦S 128 54 74 21.23 16.11 23.48

Total 10387 5105 5282 - - -
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Table A1. Mathematical expressions for the transfer functions limiting behaviors for z/δn →

0. δ1 =
√

2K0/(2πν + f). δ2 = K1/(2πν + f). Γ = 0.5772 is the Euler’s constant.

K(z) a - infinite layer b - one layer c - one and a half layer
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Table A2. Limiting behaviors for small argument of the zeroth and first orders modified Bessel

functions of the first and second kinds. Γ is the Euler constant.
I0(ξ) K0(ξ) I1(ξ) K1(ξ)

|ξ| → 0 1 − ln
(

ξ
2

)
− Γ ξ/2 ξ−1
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Table B1. Characteristics of the cost function minimizations. Kn: vertical viscosity polyno-

mial coefficients; h: boundary layer depth in m; NM: Nelder-Mead simplex method ; NMSA:

Nelder-Mead simplex method plus Simulated Annealing with the following options: starting

temperature 100◦, termination temperature 0.1◦, temperature step factor 0.1. The result distri-

bution line refers to the number of modes found in the joint probability density functions of the

optimum parameters, obtained from the bootstrapping procedure.

Model 1a 1b 1c

Parameters K0 K0,h K0,h

Limit constraints [0, 3] [0, 3], [0, 104] [0, 3], [0, 104]

Initial guess 0.5 (0.1, 50) (0.01, 1000)

Algorithm NM NMSA×2 NMSA

Results distributiona 1 1 (2 at 31◦S) 2

Model 2a 2b 2c

Parameters K1 K1, h K1, h

Limit constraints [0, 3] [0, 3], [0, 104] [0, 3], [0, 104]

Initial guess 0.001 (10−3, 200) (10−3, 103)

Algorithm NM NMSA×2 NM×2

Results distribution 1 2 1

Model 3a 3b 3c

Parameters K0, K1 K0, K1, h K0, K1, h

Limit constraints [0, 3], [0, 3] [0, 3], [0, 3], [0, 104] [0, 3], [0, 3], [0, 104]

Initial guess (0.01, 0.1) (10−2, 8×10−3, 500) (10−2, 8×10−3, 500)

Algorithm NM NM NM

Results distribution 1 2 1

a1:unimodal 2:bimodal
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Figures
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Figure 1. Schematics of the models. Black curves: velocity profiles. Gray curves: K profiles.
K = K0: models 1a, 1b, 1c; K = K1z, models 2a, 2b, 2c;K = K0 + K1z, models 3a, 3b, 3c.
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Figure 2. (a) Drifter trajectory segments used in this study between 30◦S and 60◦S. The 40-day
segments are colored according to their mean latitude, following a repeated 5-class qualitative
colormap to distinguish one 2◦ latitudinal band from the next.
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Figure 3. (a) Latitudinal distribution and (b) longitudinal distribution of the median dates of
the of the 20-day overlapping 40-day drifter trajectory segments.
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Figure 4. (a) Month distribution of the median dates, and (b) year distribution of the mean
latitude of the 20-day overlapping 40-day drifter trajectory segments used in this study.
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Figure 5. Phase of the cross-spectrum between the drifter ageostrophic velocities and various
wind and wind stress data for the data in the 52◦- 54◦S latitudinal band. ECMWF stress,
ECMWF 10-m wind and NCEP 10-m wind are instantaneous values valid at the drifter time.
NCEP stress -6h is the average value valid over the previous 6 hours before the drifter time.
NCEP stress is the average value valid over the next 6 hours starting from the drifter time.
Average NCEP stress is the arithmetic average of these last two values. ECMWF stress -6h
is the instantaneous stress value valid 6 hours before the drifter time. A positive phase means
that the ocean velocity is to the left of the wind. A positive linear slope of the phase indicates
that the wind lags the ocean velocities. In the order of the legend, the linear dependence of the
phase on frequency between 0 and 1 cpd converted to a constant time lag in hours of the wind
product with respect to the ocean velocity are: 1.62, 4.69, -1.36, 1.68, 1.77, 1.26, 7.64.
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Figure 6. a) K0 estimates for models 1a, 1b, 1c, 3a, 3b, and 3c. b) K1 estimates for models
2a, 2b, 2c, 3a, 3b, and 3c. c) h estimates for models 1b, 1c, 2b, 2c, 3b, 3c. The error bars
correspond to plus or minus the mean absolute difference from the mean (see Appendix B3).
d) Minimized cost function L in arbitrary units. Values plotted correspond to the mean value
of L from 500 bootstrap samples (see Appendix B3)
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Figure 7. Average cost function values for all data (left panel), data south of 50◦S (middle
panel) and data to the north of 50◦S (right panel). Error bars are plus or minus the latitudinally
averaged standard error for the cost function as derived in appendix B.
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Figure 8. Boundary layer depth h and vertical viscosity K0 for model 1b. The results for
year-round data are plotted in black, for summer in red and for winter in blue. The overall
optimum parameters are plotted with white-filled symbols and the bootstrap distributions are
plotted with colored dots.
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Figure 10. a) Filled symbols are δ2(0) for all data (black), summer data (red) and winter data
(blue) The planetary scale, u∗/f , is computed from the mean of the wind stress interpolated on
the drifter positions (see text). The magenta curves with seasonal symbols are the MLD from
Dong et al. (2008). b) K1 for model 3b and friction velocity u∗. Symbols for seasons are: +
all data,, winter data, ◦ summer data. The error bars for MLD, u∗ and u∗/f are the standard
error of the mean. The error bars for δ2(0) are obtained by formally propagating the errors
fromK0 andK1 taken as the mean of the absolute differences between the bootstrap estimates
and the overall most probable estimate.
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Figure 11. Sea surface roughness estimates z0 = K0/K1 in 2◦ latitudinal bands for models 3b.
Note that no overall optimum estimates cannot be obtained south of 50◦S since the optimum
K1 ≈ 0.
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Figure A1. Transfer functions for model 1a with K0 = 574 × 10−4 m2 s−1 ; model 1b with
K0 = 106 × 10−4 m2 s−1 and h = 51 m; model 1c with K0 = 558 × 10−4 m2 s−1 and
h = 1528 m; f = −0.95 × 10−4 s−1 corresponding to 41◦S and an inertial frequency of ap-
proximately 1.3 cpd. Each curve is the transfer function as a function of depth for frequencies
ν = −1.95 . . . 1.95 cpd at 0.05 cpd interval, with lines color-coded by frequency. The black
curves are the transfer functions at the zero-frequency. The transfer function at 15 m is indi-
cated by a colored dot on each curve for each model. The gray curve joins the z = 0 m points
for all frequencies for models 1a, 1b and 1c. For model 1c a gray curve also joins the z = h

points. The dotted lines indicate the x and y axes and the ± 45◦ directions.The lower-right
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Figure A2. Transfer functions for model 2a with K1 = 0.77 × 10−2 m s−1 ; model 2b with
K1 = 0.42×10−2m s−1 and h = 56m; model 2c withK0 = 0.77×10−2 m s−1 and hO(104) m;
f = −0.95 × 10−4 s−1 corresponding to 41◦S and an inertial frequency of approximately 1.3
cpd. See also the caption for Fig. A1. The theoretical transfer functions at 15 m depth are
projected on the plane coinciding with the bottom of the axes. The real part of the transfer
functions at ν = 0 is projected on the (x,z) plane and the imaginary part on the (y,z) plane and
these curves are drawn in black. Since these transfer functions are not defined at the surface,
the curves curves start at the depth z = −0.1 m. The lower-right panel is the observed transfer
function at 15 m in the 41◦S zonal band.
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Figure A3. Transfer functions for model 3a withK0 = 205×10−4 m2 s−1 ,K1 = 0.71×10−2

m s−1 ; model 3b with K0 = 203 × 10−4 m2 s−1 , K1 = 0.72 × 10−2 m s−1 and h O(103)
m; model 3c with K0 = 217 × 10−4 m2 s−1 , K1 = 0.71 × 10−2 m s−1 and h O(104) m;
f = −0.95 × 10−4 s−1 corresponding to 41◦S and an inertial frequency of approximately 1.3
cpd. The transfer function at the surface is plotted with a gray curve projected on the plane
coinciding with the bottom of the axes. The lower-right panel is the observed transfer function
at 15 m in the 41◦S zonal band. See also the captions of Fig. A1 and A2.


